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SUMMARY

A discontinuous Galerkin (DG) method with solenoidal approximation for the simulation of incompressible
flow is proposed. It is applied to the solution of the Stokes equations. The interior penalty method is
employed to construct the DG weak form. For every element, the approximation space for the velocity
field is decomposed as the direct sum of a solenoidal space and an irrotational space. This allows to split
the DG weak form into two uncoupled problems: the first one solves for the velocity and the hybrid
pressure (pressure along the mesh edges) and the second one allows the computation of the pressure in
the element interior. Furthermore, the introduction of an extra penalty term leads to an alternative DG
formulation for the computation of solenoidal velocities with no presence of pressure terms. Pressure
can then be computed as a post-process of the velocity solution. Numerical examples demonstrate the
applicability of the proposed methodologies. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Research in finite element methods for the numerical solution of problems with incompressibility
constraints has been very active in the past decades. These problems have a large number of appli-
cations ranging from the simulation of incompressible fluids to the solution of Maxwell’s equations
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in electrodynamic problems. An interesting alternative is to use explicit divergence-free bases in
order to solve problems with incompressibility. Crouzeix and Raviart [1] were the first to construct
divergence-free elements in order to eliminate the pressure in the final equation. They used trian-
gular conforming and non-conforming elements where the incompressibility condition was only
approximately satisfied. Griffiths [2] proposed an element-level divergence-free basis for several
finite element schemes on triangular and quadrilateral elements. Nevertheless, a major limitation
of these techniques is that continuous and weakly divergence-free (or discretely divergence-free
following the notation of [3]) approximation spaces are difficult to generalize for higher-order
approximations.

More recently, several authors have focused their attention on discontinuous Galerkin (DG)
formulations for computational fluid dynamics [4] and in particular for the Stokes equations
[5–7]. The attractiveness of DG method is mainly due to its stability properties in convection-
dominated problems, its efficiency for high-order computations, which allows hp-adaptive refine-
ment, and local conservation properties. Moreover, in a DG framework, divergence-free high-order
approximations can be easily defined: an element-by-element discontinuous approximation with a
divergence-free polynomial base in each element can be considered with a straightforward defi-
nition for high-order approximations [5, 6]. Because of the important costs of DG methods, the
reduction in degrees of freedom (both in velocity and pressure) induced by a divergence-free
approach is very interesting from a computational point of view.

In the 1990s, Baker et al. [5] and Karakashian and Jureidini [8] developed and analyzed a
DG formulation with a piecewise polynomial divergence-free velocity, with optimal error bounds.
Nevertheless, this formulation has some limitations: it requires the use of continuous pressure
approximations; only Dirichlet boundary conditions are considered (in fact, natural boundary
conditions cannot be easily imposed), and different computational meshes (with different mesh
sizes) must be considered for velocity and pressure to ensure stability.

A DG method for the Stokes equations with piecewise polynomial approximations was also
proposed and analyzed by Toselli [7], but without the pointwise imposition of the divergence-
free condition. This DG formulation shows better stability properties than continuous Galerkin
approximations, and uniform divergence stability is proven when velocity is approximated one
or two degrees higher than pressure. In fact, equal-order interpolation numerical results show no
spurious pressure modes although no uniform stability properties are proven. Unfortunately, the
bilinear form related with velocities is non-symmetric, and the DG advantages for the definition
of piecewise solenoidal approximations are not exploited.

More recently, Cockburn and coworkers propose [6, 9, 10] a DG formulation with solenoidal
piecewise polynomial approximations. It is derived from a local discontinuous Galerkin (LDG)
rationale based on a mixed formulation of the problem (with velocity, vorticity and pressure), and
with the introduction of numerical traces. The concept of hybrid pressures is also introduced, that
is, pressures along the element sides. Pressures in the interior of the elements are computed as
a post-process of the LDG solution. For analysis purposes, the LDG formulation is expressed in
compact form in [9]. With the introduction of proper lifting operators, the vorticity is replaced
in the LDG formulation leading to a velocity–pressure formulation with symmetric and coercive
bilinear form for velocities.

In this work, a new DG formulation with piecewise solenoidal polynomial velocity and hybrid
pressures is proposed. It is derived from an interior penalty method (IPM) rationale [11, 12],
leading also to a symmetric and coercive bilinear form for velocities. As for the LDG formulation,
the approximation space for the velocity field is decomposed in every element as direct sum of
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DG METHODS FOR THE STOKES EQUATIONS 1073

solenoidal and irrotational polynomial spaces. This also allows to split the IPM weak form into
two uncoupled problems: the first one solves for velocity and hybrid pressure and the second one
allows the evaluation of pressures in the interior of the elements. The resulting method has many
points in common with the LDG formulation in compact form stated in [9]. Namely, both are
formulated in terms of piecewise solenoidal velocities and hybrid pressures, the bilinear form is
symmetric and positive definite, and the pressure in the interior of the elements is computed as a
post-process of the solution. Nevertheless, different rationales are followed for the LDG and IPM
methods, leading to completely different formulations. For instance, one of the most remarkable
differences is that the IPM formulation proposed here does not involve lifting operators that induce
an approximate orthogonality property in the LDG formulation [9].

The IPM weak problem is also reformulated as a minimization problem subject to the constraint
of normal continuity of the velocity field. The solution of this optimization problem with the
introduction of a non-consistent penalty leads to an alternative DG formulation for the computation
of solenoidal velocities with no presence of pressure terms (i.e. solving a system with symmetric
positive-definite matrix). Pressure can then be computed as a post-process of the velocity solution.
This second IPM method exactly coincides with the DG method proposed in [13], where different
alternatives for the approximation, based on the definition of a piecewise continuous stream
function spaces, are also proposed and analyzed. In fact, it is worth noting the contributions in
solid mechanics by Hansbo and co-workers [12, 14, 15], which have inspired several authors (see,
for instance, [16] for the solution of the Navier–Stokes equations) and in particular this paper.

The contributions of this paper are presented as follows. The derivation of a new DG IPM formu-
lation for the solution of Stokes problems, with Dirichlet and Neumann boundary conditions, is
presented in detail in Section 3.1. The particularization of the IPM weak form with a splitting of
the velocity space in solenoidal and irrotational parts is presented and analyzed in Section 3.2. In
Section 3.3, the DG method initially proposed by Hansbo and Larson in [13] is presented with
an alternative derivation. The implementation of Neumann boundary conditions is included in the
formulation, and a methodology for the computation of pressures as a post-process of the velocity
solution is proposed. Numerical tests demonstrate the applicability of both methodologies (IPM and
IPM with non-consistent penalty) for the solution of the Stokes equations in Section 5. The selec-
tion of the penalization parameters in order to achieve optimal convergence rates is also studied.
Finally, the IPM formulation is used for the simulation of a fluid flow through a porous medium.

2. THE STOKES PROBLEM

Let �⊂Rnsd be an open bounded domain with piecewise linear boundary �� and nsd the number
of spatial dimensions. Suppose that � is partitioned in nel disjoint subdomains �i , which for
example correspond to different materials, with also piecewise linear boundaries ��i which define
an internal interphase �; the following definitions and notations are used:

�=
nel⋃
i=1

�i , �i ∩� j =∅ for i �= j

�̂ :=
nel⋃
i=1

�i and � :=
nel⋃
i, j=1
i �= j

�i ∩� j =
[
nel⋃
i=1

��i

]∖
��
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1074 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

The strong form of the homogeneous Stokes problem can be expressed as

−∇·r= s in �̂ (1a)

∇·u= 0 in �̂ (1b)

u= uD on �D (1c)

n·r= t on �N (1d)

�n⊗u� = 0 on � (1e)

�n·r� = 0 on � (1f)

where ��=�D∪�N, �D∩�N=∅, s∈ 2(�) is a source term, r is the (‘dynamic’ or
‘density-scaled’) Cauchy stress, which is related to velocity, u, and pressure, p, by the linear
Stokes’ law

r=−p I+2�∇su (2)

with � being the kinematic viscosity and ∇s= 1
2 (∇+∇T).

The jump �·� and the mean {·} operators are defined along the interface � using values from
the elements to the left and right of the interface—say, �i and � j—and are also extended along
the exterior boundary—only values in the interior of � are employed—namely

�©◦ �=
{©◦ i +©◦ j on �

©◦ on ��
and {©◦ }=

{
�i ©◦ i +� j ©◦ j on �

©◦ on ��

Usually �i =� j = 1
2 but, in general, these two scalars are only required to verify �i +� j =1, see,

for instance, [12]. Note that definitions such as

�i =
{
1 if �i is the largest

0 otherwise

are also possible.
The major difference between the mean and the jump operator is that the latter always involves

the normal to the interface or to the domain. Given two contiguous subdomains �i and � j , their
exterior unit normals are denoted by, respectively, ni and n j (recall that ni =−n j ) and along ��
the exterior unit normal is denoted by n. In what follows, the jump operator as defined previously
will appear in these three cases:

�pn�=
{
pi ni + p j n j =ni (pi − p j ) on �

pn on ��
for scalars (3)

�n⊗v�=
{
ni ⊗vi +n j ⊗v j =ni ⊗(vi −v j ) on �

n⊗v on ��
or (4)
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�n·v�=
{
ni ·vi +n j ·v j =ni ·(vi −v j ) on �

n·v on ��
for vectors (5)

�n·r�=
{
ni ·ri +n j ·r j =ni ·(ri −r j ) on �

n·r on ��
for second-order tensors (6)

This definition of the jump was previously considered by other authors, see, for instance, [9],
and presents two important advantages: first, it does not depend on a selection of a privileged
normal sign on the edges in 2D or faces in 3D, and second, the input and output spaces for
the operator coincide, that is, the jump of a scalar is a scalar, the jump of a vector is a vector,
etc. Other definitions have been more popular in the past, but do not have these advantages. For
instance, the jump at an edge �E, shared by two elements �i and � j with i< j , could be defined
as �u�=ui −u j , see [5] among others. This definition involves the decision of a privileged normal
sign; therefore, it may lead to weak definitions with a not desirable dependency on this choice.
Another alternative definition would be �u�=uini +u jn j for scalar u, �u�=ui ·ni +u j ·n j for
vector u, etc., see, for instance, [17]. It also does not require the selection of a normal sign, but it
has different spaces for the input and the output: the jump of a scalar is a vector and the jump of
a vector is a scalar. Moreover, the use of this definition camouflages the presence of the normal
in the weak formulation: note that the evaluation of �u� involves the normal, although the normal
does not explicitly appear in the weak form. Thus, in the authors’ opinion the jump operator (3)
leads to more easily readable weak formulations. Nevertheless, there is one situation where jump
(3) or the definition used in [17] present some limitations: the computation of the jump of a scalar
function with no presence of the normal vector. In the following, this computation appears only
for terms of the form (ui −u j ,vi −v j )�E , where �i and � j are the elements sharing the interface
�E, and the following identity is used:

(ui −u j ,vi −v j )�E =(�n⊗u�,�n⊗v�)�E

3. THE WEAK FORM OF THE STOKES PROBLEM

Following the usual methodology in the DG framework, the weak problem from the strong form
defined by (1) is considered for each domain �i . That is, find ui ∈[ 1(�i )]nsd and pi ∈ 2(�i )

for i=1, . . . ,nel, which comply the boundary conditions (1c), (1e) and (1f) such that

a�i (ui ,v)+b�i (v, pi )−(ni ·r(ui , pi ),v)��i\�N
+b�i (ui ,q)= l�i (v)+(t,v)��i∩�N

(7)

for all (v,q)∈[ 1(�i )]nsd × 2(�i ), where

a�i (v,w)=
∫

�i

2�∇sv :∇swd�, b�i (v,q)=−
∫

�i

q∇·vd�

l�i (v)=
∫

�i

svd�
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1076 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

In the previous and the following equations, (·, ·)� denotes the 2 scalar product in any domain
�⊂�∪��, that is

(p,q)� =
∫

�
pq d� for scalars

(u,v)� =
∫

�
u·vd� for vectors

(r,s)� =
∫

�
r :sd� for second-order tensors

In order to rewrite all nel weak problems defined in (7) as one weak problem, let u be such
that its restriction to �i is ui , namely u∈[ 1(�̂)]nsd with

[ 1(�̂)]nsd :={v∈[ 2(�)]nsd |v|�i∈[ 1(�i )]nsd for i=1, . . . ,nel}
and, similarly, p∈ 2(�) is such that its restriction to �i is pi . Differential operators are assumed
to act on these functions piecewise and not in the sense of distributions. Thus, adding equations
(7) for i=1, . . . ,nel, the unique weak problem becomes: find u and p such that

a(u,v)+b(v, p)−
nel∑
i=1

(ni ·r(ui , pi ),v)��i\�N
+b(u,q)= l(v) (8)

for all test functions v∈[ 1(�̂)]nsd and q∈ 2(�); where the bilinear forms are now integrated
over the whole domain �, namely

a(v,w)=
∫

�
2�∇sv :∇swd�, b(v,q)=−

∫
�
q∇·vd�

and

l(v)=
∫

�
svd�+(t,v)�N

For two contiguous subdomains, �i and � j , with a common boundary �e⊂� it is easy to check
that

(ni ·r(ui , pi ),vi )�e +(n j ·r(u j , p j ),v j )�e

=({r(u, p)},�n⊗v�)�e +(�n·r(u, p)�,� jvi +�iv j )�e

Moreover, the boundary condition (1f) simplifies the previous equation because the last term is
zero. Thus, from the previous equation the weak form (8) can be rewritten as

a(u,v)+b(v, p)−({r(u, p)},�n⊗v�)�−(n·r(u, p),v)�D +b(u,q)= l(v)

This expression can be further simplified using the extension of the jump and mean operators
on the exterior boundary, in particular, in this case along �D, and the identity n·r ·v=r :(n⊗v).
The weak problem equivalent to (1) becomes: find u∈[ 1(�̂)]nsd and p∈ 2(�) subject to the
boundary conditions defined by (1c) and (1e) such that

a(u,v)+b(v, p)−({r(u, p)},�n⊗v�)�∪�D +b(u,q)= l(v) (9)

for all test functions v∈[ 1(�̂)]nsd and q∈ 2(�).
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3.1. The IPM formulation

Following the standard approach of IPM [11], the previous weak problem (9) is symmetrized and a
new term is added to ensure a coercive bilinear form for the velocity. In this process, the boundary
conditions (1c) and (1e)—not yet imposed—are used in order to maintain the consistency of the
weak problem (i.e. the solution of (1) is the solution of the weak problem). The resulting IPM
weak problem can then be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

a(u,v)+b(v, p)+b(u,q)−({r(u, p)},�n⊗v�)�∪�D −(�n⊗u�,{r(v,q)})�∪�D

+�(l−1
e �n⊗u�,�n⊗v�)�∪�D = l(v)−(uD,n·r(v,q))�D +�(l−1

e uD,v)�D

for all v∈[ 1(�̂)]nsd and q∈ 2(�), where le is a measure of each interface �e (edge in 2D, face
in 3D) and � is a scalar parameter, which must be sufficiently large (to ensure coercivity of the
form aIP(·, ·) defined below, see Remark 1). Note that boundary conditions (1c) and (1e) are no
longer explicitly mentioned because they are now imposed in weak form.

Using the constitutive law (2) in the previous equation, the weak problem, which presents a
symmetric structure, can be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

aIP(u,v)+b(v, p)+({p},�n·v�)�∪�D

+b(u,q)+({q},�n·u�)�∪�D = lIP(v)+(q,n·uD)�D (10)

for all v∈[ 1(�̂)]nsd and q∈ 2(�), with

aIP(u,v) := a(u,v)−(2�{∇su},�n⊗v�)�∪�D

−(�n⊗u�,2�{∇sv})�∪�D +�(l−1
e �n⊗u�,�n⊗v�)�∪�D (11a)

and

lIP(v) := l(v)−(uD,2�n·∇sv)�D +�(l−1
e uD,v)�D (11b)

This weak form is close to the formulation proposed in [7] where stability is also studied. It
clearly identifies pressure with the Lagrange multiplier that imposes both a weakly solenoidal field
inside each element and a continuous normal component along �. However, the IPM provides a
symmetric bilinear form for the velocity, see Equation (11a), whereas the formulation proposed in
[7] does not.

An alternative IPM formulation that does not require the evaluation of the divergence of the
velocity field can also be obtained from (10). The divergence term is replaced using the following
identity valid for any v∈[ 1(�̂)]nsd and q∈ 2(�):

b(v,q)+({q},�n·v�)�∪�� =(v,∇q)�−(�q n�,{{v}})�
where the operator {{·}} is defined at any interior edge �E=�i ∩� j as

{{v}}=� jvi +�iv j

Using this identity and its particularization for v=u, the solution of the problem (which is contin-
uous and verifies (1c)), i.e.

b(u,q)+(q,n·u)�N =(u,∇q)�−(n·uD,q)�D −(�q n�,{{u}})�
Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1071–1092
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1078 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

the IPM weak formulation (10) can be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

aIP(u,v)+(v,∇p)�−(p,n·v)�N −(�pn�,{{v}})�
+(u,∇q)�−(q,n·u)�N −(�q n�,{{u}})� = lIP(v)+(n·uD,q)�D

for all v∈[ 1(�̂)]nsd and q∈ 2(�). The structure of this formulation suggests the use of contin-
uous pressures to simplify the equation, removing the terms with the {{·}} operator. The resulting
formulation is more closely related to the work presented in [5, 8], where the proposed bilinear
form is also symmetric and with no presence of divergence terms. Nevertheless, the weak formu-
lation proposed in [5, 8] has some limitations: as commented, it requires the use of continuous
approximations for the pressure, it is developed only for Dirichlet boundary conditions and natural
boundary conditions cannot be directly imposed, and different computational meshes (with different
mesh size) must be considered for velocity and pressure to ensure stability.

In this paper, the IPM formulation (10) is preferred because discontinuous approximations for
the pressure are considered and, more importantly, because this weak formulation can be further
simplified using piecewise solenoidal approximations.

3.2. The IPM formulation with solenoidal space

It is well known that any function in [ 1(�i )]nsd can be expressed as the sum of a solenoidal
part and an irrotational one. Thus, the functional space for the velocity can be split into the direct
sum: [ 1(�̂)]nsd = ⊕ where

:={v∈[ 1(�̂)]nsd |∇·v|�i =0 for i=1, . . . ,nel}
⊂{v∈[ 1(�̂)]nsd |∇×v|�i =0 for i=1, . . . ,nel}

Note also that u, the solution of the original problem (1) and (10), belongs to . Under these
circumstances, problem (10) can be split into two uncoupled problems, for test functions in and
, respectively.
First, divergence-free solution and test functions, u, v∈ , are considered in the IPM formulation

(10), leading to a simplified IPM formulation with no divergence terms

aIP(u,v)+({p},�n·v�)�∪�D +({q},�n·u�)�∪�D = lIP(v)+(q,n·uD)�D (12)

for all v∈ and q∈ 2(�). This formulation is further simplified with the introduction of the space
of the so-called hybrid pressures, that is

:={ p̂ | p̂ :�∪�D−→R and p̂=�n·v� for some v∈ } (13)

see [6] for details.
Thus, the first problem for divergence-free velocities and hybrid pressures becomes: find u∈

and p̂∈ such that

aIP(u,v)+( p̂,�n·v�)�∪�D = lIP(v) ∀v∈
(q̂,�n·u�)�∪�D = (q̂,n·uD)�D ∀q̂∈ (14a)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1071–1092
DOI: 10.1002/fld



DG METHODS FOR THE STOKES EQUATIONS 1079

The second problem, which requires the solution of the previous one, i.e. the velocity u and the
hybrid pressure p̂, determines the interior pressure: find p∈ 2(�̂)

b(v, p)= lIP(v)−aIP(u,v)−( p̂,�n·v�)�∪�D ∀v∈ (14b)

Note that this second problem would allow an independent computation of the interior pressure in
every domain �i .

The IPM formulation with solenoidal and irrotational spaces proposed here has many points in
common with the LDG formulation in compact form presented in [9]. Both consider piecewise
polynomial approximations, see Section 4, and a splitting of the approximation space as a sum of
solenoidal and irrotational parts, leading to two uncoupled problems: the first for velocities and
hybrid pressures, and the second for the computation of pressures in the interior of the elements.
Moreover, the bilinear form is symmetric, continuous and coercive in both formulations (see
Remark 1). Nevertheless, the IPM and the LDG methods correspond to different formulations. In
fact, none of the two methods can be expressed as a particular case of the other one. The LDG
method is deduced from a mixed formulation of the Stokes problem with velocity, vorticity and
pressure, and it is expressed in compact form using proper lifting operators to replace the vorticity.
In fact, the presence of lifting operators in the weak form is an important difference with the
IPM method, with consequences in the consistency of the formulation. The IPM formulation is a
consistent formulation in the sense that the solution of the Stokes problem (1) is also a solution
of the IPM weak form, whereas the LDG formulation only verifies an approximate orthogonality
property, see [9] for details.
Remark 1
For � large enough, the IPM bilinear form aIP(·, ·) defined in (11a) is continuous and coercive,
that is

aIP(u,v)�|‖u‖||‖v‖| ∀v∈ (15)

and

m|‖v‖|�aIP(v,v) ∀v∈ (16)

for some constant m>0 independent of the mesh size h, where

|‖v‖|2=‖∇sv‖2�+‖h1/2n·{∇sv}‖2�∪�D
+‖h−1/2�n⊗v�‖2�∪�D

(17)

and the 2 norms are defined as

‖f‖2� =∑
i

∫
�i

f : fd�, ‖ f ‖2�∪�D
=( f, f )�∪�D (18)

These properties can be proved following standard arguments, see [13, 14] for details.

3.3. IPM formulation with penalization of the discontinuity

The IPM formulation with solenoidal spaces presented in the previous section, see Equation (14a),
allows a computation of the velocity solution involving the pressure only in the boundary of
the domains �i , i.e. the hybrid pressure. The aim of this section is more ambitious: to obtain a
completely decoupled formulation allowing the computation of the solenoidal velocity, but with

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1071–1092
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no presence of pressures at all. As proposed in [13], the introduction of a new penalty in the weak
formulation achieves this purpose. However, the price of a totally decoupled velocity–pressure
formulation is the loss of consistency, which provokes the ill-conditioning typical for non-consistent
penalty formulations.

The DG formulation initially proposed and analyzed in [13] is deduced next from an alternative
rationale, based on the IPM formulation (14a) and the introduction of a non-consistent penalty.
The IPM formulation with solenoidal velocities (14a) can be rewritten as a saddle-point problem,
namely

(u, p̂)=argmin
v∈ max

q̂∈
1
2aIP(v,v)−lIP(v)+(q̂,�n·v�)�∪�D −(q̂,n·uD)�D (19)

or, equivalently, as a minimization problem subject to normal continuity constraints,

u=arg min
v∈

s.t.�n·v�=0 on �
n·v=n·uD on �D

1
2aIP(v,v)−lIP(v) (20)

Note that the terms with pressures are canceled, thanks to the imposed continuity constraints.
As usual in constrained minimization problems, the previous optimization problem can be solved
using a non-consistent penalty, see, for instance, [18]. The corresponding minimization problem
with penalty is

u=argmin
v∈

1
2aIP(v,v)−lIP(v)+�[(�n·v�,�n·v�)�−(n·(uD−v),n·(uD−v))�D]

where � is a scalar penalty to be chosen. The solution of this optimization problem is the solution
of the following IPM weak formulation with penalty: find u� ∈ such that

aIP(u�,v)+�(�n·u��,�n·v�)�∪�D = lIP(v)+�(n·v,n·uD)�D (21)

for all v∈ . In the following, we refer to this weak formulation as interior penalty method with
penalty (IPMP) in front of the IPM formulation described in (14).

Once the velocity is obtained, pressure can be computed as a post-process with two steps. First,
an approximation of the hybrid pressure can be obtained introducing the solution of (21) in (14a),
namely

p̂� =
{

��n·u�� on �

�n·[u�−uD] on �D

Then, with u� and p̂� the interior pressure can be determined as the solution of (14b).
It is important to remark that the IPMP formulation (21) involves two different penalties with

important differences. The first one is inherited from the IPM formulation, i.e. �/ le in the bilinear
form aIP(·, ·) defined in (11a). It is a consistent penalty in the sense that the solution of the original
problem (1) is the solution of the IPM formulation (14a); therefore, as usual in IPM formulations,
in practice moderate values of the constant parameter � provide accurate and optimally convergent
results. This is not the case for the second penalty. The penalty � in the IPMP formulation (21)
is a non-consistent penalty: the solution of the IPMP formulation verifies the continuity of the
normal component of the velocity and the Dirichlet boundary conditions only in the limit, for
� going to infinity. This lack of consistency is the origin of the usual drawbacks of penalty
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techniques: the tuning of the penalty parameter affects the accuracy of the solution and, in practice,
too large values of � are needed, leading to ill-conditioned systems of equations. In fact, as proved
in [18] in the context of boundary conditions, and as it is seen in the numerical examples, the
penalty parameter � has to be of order h−k in order to keep the optimal 1 convergence rate, with
h the element size and k the degree of the approximation.

It is worth noting that an alternative and consistent methodology for the solution of the
constrained minimization problem (20) would be the introduction of a Lagrange multiplier. That is,

(u,�)=argmin
v∈ max

�∈�

1
2aIP(v,v)−lIP(v)+(�,�n·v�)�−(�,n·(v−uD))�D

where � is the Lagrange multiplier defined at �∪�D. This formulation corresponds exactly to
(19), or equivalently to the IPM formulation (14a), demonstrating that the hybrid pressure plays
the role of a Lagrange multiplier to impose the continuity of the normal velocity.

4. FINITE-DIMENSIONAL SPACES

In practice, approximations to the exact solution are obtained using finite-dimensional spaces.
In particular, standard finite-dimensional polynomial spaces may be introduced in each element
(standard DG) for all the previously defined weak problems, namely

h :={v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd for i=1, . . . ,nel}
and

h :={p∈ 2(�) | p|�i ∈Pk−1(�i ) for i=1, . . . ,nel}
where Pm denotes the space of complete polynomials of degree less than or equal to m. The finite
counterparts of and are

h ={v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd, ∇·v|�i =0 for i=1, . . . ,nel}
h ⊂{v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd, ∇×v|�i =0 for i=1, . . . ,nel}

such that h ⊂ . Note that the following relations and inclusions are verified: h = h⊕ h ,
h ⊂[ 1(�̂)]nsd , h ⊂ 2(�) and h ⊂ . The finite-dimensional subspace associated with the

hybrid pressures, h ⊂ , can be defined directly from (13) restricting velocities to h . In fact,
Reference [6] also demonstrates that h corresponds to piecewise polynomial pressures in the
element edges in 2D or faces in 3D.

It is worth noting that the definition of the solenoidal and irrotational polynomial bases to be
used at each element is an easy task. For instance, a solenoidal base in a 2D triangle for an
approximation of degree k=2 is

h =
〈(

1

0

)
,

(
0

1

)
,

(
0

x

)
,

(
x

−y

)
,

(
y

0

)
,

(
0

x2

)
,

(
2xy

−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)〉
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The use of this polynomial basis defined with Cartesian coordinates was also proposed in [6]. An
irrotational base for k=2 is

h =
〈(

x

0

)
,

(
x2

0

)
,

(
0

y2

)〉

In the numerical examples, to avoid ill-conditioning of the elemental matrices, all polynomials p
of the base are centered and scaled at each element as p((x−ce)/he), where ce and he denote the
center and the size of the element, respectively.

Remark 2
With these polynomial spaces, the numerical solution uh of the IPM method presented in Section
3.2 verifies the following error bound:

|‖u−uh‖|�Kh�|u| 1+�
(�)

(22)

for u∈H1+�(�), 1���k and some constant K . This result can be proved using the continuity
and coercivity of the bilinear form, see Remark 1 in Section 3.2. Following [9], the space of
piecewise divergence-free polynomial functions with continuity constraints for the normal velocity
is considered

Zh(uD)={v∈ h :(q,�n·v�)�∪�D =(q,n·uD)�D ∀q∈ h}⊂ h

Note that although the LDG formulation analyzed in [9] verifies an approximate orthogonality
with a residual h �=0 (due to the introduction of the lifting operators), the IPM formulation is
consistent and therefore the residual is in this case h =0. Thus, the particularization of the error
bound stated in [9] is

|‖u−uh‖|�(1+m) inf
v∈Zh(uD)

|‖u−v‖|

where m is the coercivity constant, see Remark 1. The error bound (22) is obtained considering the
projection into the BDM0 space (Brezzi–Douglas–Marini space of full polynomial approximations
with normal continuity and zero elementwise divergence, see [19] for details), that is v=�BDMu.
Note that BDM0⊂ Zh(uD), thus using the bound in [13] for the |‖·‖| norm, i.e.

|‖u−�BDMu‖|�Ch�|u| 1+�
(�)

with some constant C , bound (22) is proved.

Remark 3
The convergence of the IPMP formulation, developed in Section 3.3, is analyzed in detail in [13]
for different approximation spaces. For velocity approximation spaces including the BDM0 space,
the error bound is

|‖u−uh‖|�C(h�|u| 1+�
(�)

+h‖p‖ 1
(�)

)

for some constant C , and u∈ 1+�
(�), with 1���k.
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5. NUMERICAL EXAMPLES

To demonstrate the applicability of the two proposed methods, some numerical examples are shown
in this section. In all tests, an approximation of order k for velocity and k−1 for pressure is
considered. Triangular meshes are obtained by splitting a regular n×m Cartesian grid into a total
of 2n×m triangles for a rectangular domain, or 2n2 triangles for a square domain, giving uniform
element size of h=1/n.

5.1. Driven cavity example

A standard benchmark test for incompressible flows is considered first. A plane flow of an
isothermal fluid in a lid-driven cavity is modeled in a 2D square domain �=]0,1[×]0,1[, with
zero body force and one moving wall. A velocity u=(1,0)T is imposed on the exterior upper
boundary {y=1}, and a zero velocity u=(0,0)T is enforced on the other three sides.

Figure 1 shows the velocity vectors and the pressure fields of the flow for, respectively, the IPM
and the IPMP formulations, with a discretization of order k=2 for velocity and order k−1=1 for
pressure. Results fit to the expected solution; note that around the two upper corners the pressure
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Figure 1. Driven cavity IPM (top) and IPMP (bottom) results for second-order velocity and linear pressure:
(a) IPM velocity and pressure with �=10 and (b) IPMP velocity and pressure with �=10 and �=1000/h2.
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0 0.7

1 1

0 0.7(a) (b)

Figure 2. IPM velocity solution with 140 elements, fourth-order velocity approximation and �=20:
(a) velocity streamlines and (b) scaled velocity.

takes not bounded values because of the discontinuity of the velocity. Recall that the computation
of velocity and pressure is completely decoupled using the IPMP, with the corresponding saving
in computational cost. Nevertheless, it is worth noting that the use of the non-consistent parameter
�=1000/h2 in the IPMP considerably increases the condition number of the matrix. Moreover,
although similar accuracy is obtained for the velocity field, for the same discretization the IPM
provides more accurate and stable results for the pressure field than the IPMP.

The same example is now used for a rectangular cavity �=]0,0.7[×]0,1[. Figure 2 illustrates
the results obtained using the IPM formulation. The results present the expected behavior. Contra-
rotating vortices are created in the corners opposite to the moving wall. In the representation of
the velocity vectors, only the direction of the flow is represented, all the arrows have the same
length so that the contra-rotating vortices can be noticed. The velocity streamlines are represented
as well to prove that the contra-rotating vortices have small amplitude compared with the main
vortex movement.

5.2. Analytical example

An example with analytical solution is now considered to study the accuracy and convergence
properties of the proposed methodologies. The Stokes equations are solved in a 2D square domain
�=]0,1[×]0,1[ with Dirichlet boundary conditions on three edges, and a Neumann boundary
condition on the fourth edge {y=0}. A body force

f=

⎛⎜⎜⎜⎜⎜⎝
12(1−2y)x4+24(−1+2y)x3+12(−4y+6y2−4y3+1)x2

+(−2+24(y−3y2+2y3))x+1−4y+12y2−8y3

8(1−6y+6y2)x3+12(−1+6y−6y2)x2

+(4+48(y2− y3)+24(y4− y))x−12y2+24y3−12y4

⎞⎟⎟⎟⎟⎟⎠
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is imposed in order to have the polynomial exact solution

u=
(

x2(1−x)2(2y−6y2+4y3)

−y2(1− y)2(2x−6x2+4x3)

)

p= x(1−x)

5.2.1. IPM analysis. The behavior of the IPM formulation is first studied. In all examples, the
consistent penalty term � is set to a sufficiently large value to ensure the coercivity of the form
aIP(, ), see Equation (11a). In practice, moderate values of this penalty term are required.

Figure 3 shows the IPM solution obtained with an approximation of degree k=2 and 4 for
the velocity field (k−1 for pressure), with the same number of degrees of freedom. One of the
advantages of the proposed method is that the order of the approximation can be easily increased,
with a straightforward modification of the definition of the solenoidal and irrotational bases, see
Section 4. As expected, the higher-order approximation provides more accurate results, with smaller
discontinuities in the solution, especially for the pressure field.
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Figure 3. IPM velocity vectors and pressure field for two different orders of approximation:
(a) velocity and pressure with degree k=2, 256 elements and �=10 and (b) velocity and pressure

with degree k=4, 72 elements and �=40.
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Figure 4. IPM convergence results with velocity approximation of degree k=2,3,4 and pressure
interpolation of degree k−1, with �=10,20,40, respectively: (a) velocity 2 error; (b) velocity

energy error; and (c) pressure 2 error.

These results also confirm that the condition proposed in [20] to ensure the coercivity of the
bilinear form is also valid for the IPM formulation with solenoidal approximation proposed here.
The explicit formula used for the computation of the consistent penalty parameter is

�≈a�k2 (23)

where a is a positive constant and k is the degree of the velocity approximation.
Figure 4 shows the convergence under h-refinement, for different orders of approximation of

the velocity and pressure. Optimal convergence is obtained using polynomials of degree k to
approximate the velocity and k−1 for pressure; that is, convergence of order k+1 for the velocity
2 norm, order k for the energy norm, and order of k for the pressure 2 norm. As usual in

consistent IPM formulations, a penalty term of order h−1, i.e constant �, suffices to maintain the
optimal convergence rates for any order of approximation. As seen in the following examples, this
is not the case for the non-consistent penalty � in the IPMP formulation.

5.2.2. IPMP analysis. The IPMP behavior is tested with the same analytical example. First, the
influence of the non-consistent penalty term � is analyzed. The IPMP velocity for an approximation
of degree k=3, with two different values of the non-consistent penalty parameter � is depicted
in Figure 5. As previously commented, rather large values of � are necessary to ensure moderate
discontinuities of the normal velocity.

Figure 6 shows the results for two different orders of approximation. Again, higher-order
approximations provide more accurate results for the same number of degrees of freedom, especially
for the pressure field that presents much better continuity.
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(a) (b)

Figure 5. IPMP velocity solution (top) and detail (bottom) for two different values of the penalty term �
with a third-order velocity approximation and 32 elements: (a) �=5/h4 and (b) �=2000/h4.

Figure 7 shows the evolution of the error under h-refinement for different orders of approximation
of the velocity and pressure, using the IPMP formulation. As usual for non-consistent penalty
formulations [18], almost optimal converge rates are achieved using a penalty term of order h−k .
As previously noted, the need of large values for the penalty � is the main drawback of the IPMP
formulation, because of the ill-conditioning of the matrices in the solution with fine meshes. For
instance, for a computation with fourth-order interpolation of the velocity and 72 elements, the
dimension of the system of equations to be solved for the IPM (with velocity and hybrid pressures)
is 1350, whereas for the IPMP (with only velocities) the dimension is 1308. The reduction in the
number of degrees of freedom is thus appreciable for the IPMP case, but in return the condition
number of the matrix is higher for the IPMP formulation: around 5×109 for the IPMP with
�=40, and 4×107 for the IPM with the same � and �=4000/h4. Moreover, under h-refinement
or p-refinement, the condition number grows faster for the IPMP than for the IPM.

To further compare the IPM and IPMP formulations, Figure 8 plots the errors obtained for
velocity and pressure with both methods. Similar accuracy is obtained for the velocity field and
the main differences are present in the pressure results. Although both methods provide optimal
convergence rates, more accurate results for pressure are obtained with a coupled computation
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Figure 6. IPMP velocity vectors and pressure field for different orders of approximation: (a) velocity and
pressure with degree k=2, 256 elements, �=10 and �=1000/h2 and (b) velocity and pressure with

degree k=4, 72 elements, �=40 and �=4000/h4.

of hybrid pressures and velocities, using the IPM formulation. As commented in the previous
example in Section 5.2, the computation of pressures as a post-process of velocities with the IPMP
represents a saving in computational cost, preserving the accuracy in the velocity field, but with a
slightly worse solution for pressure.

5.3. Flow in an idealized porous medium

A fluid in an idealized porous medium is subject to a friction force proportional to the fluid velocity
u. This kind of problem is derived from the Stokes equations and it follows Darcy’s law. It is valid
for slow, viscous flow, such as groundwater flows. The problem to be solved is

−∇·r= −�u in �̂

∇·u= 0 in �̂

u= uD on �D

�n⊗u� = 0 on �

�n·r� = 0 on �
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Figure 7. IPMP convergence results with degree k=2,3,4 for velocity and degree k−1 for pressure, with
�=10,20,40 and �=1000/h2,2000/h3,4000/h4, respectively: (a) velocity 2 error; (b) velocity energy

error; and (c) pressure 2 error.
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Figure 8. Comparison of the errors obtained with IPM and IPMP, for a cubic approximation of the velocity
(left) and a quadratic interpolation of the pressure (right), with �=20 and �=2000/h3.

where � is the inverse of the local permeability of the medium (�=0 for an empty medium and
�=+∞ for a solid wall), see [21].

These equations are solved in the computational domain shown in Figure 9, consisting of a long
straight channel of height l and length L=10l. The porous domain is limited to the central part of
length 5l. The Dirichlet boundary conditions prescribe a parabolic velocity profile at the inlet and
at the outlet, and a no-slip condition for the fluid on the channel side. The porous domain is filled
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Figure 9. Computational domain. The porous domain is limited to the
central part, of length 5l and height l.
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Figure 10. Velocity vectors within the porous domain of length 5l. The grey part represents a porous
material, the white ones an empty domain.

with porous material of arbitrary value �=100 for 2.5<x<7.5 except for two regions verifying

x ∈]3.5,6.5[ and y∈]0, 13 [∪] 23 ,1[
where empty medium is assumed, see white region in Figure 10.

Details of the IPM velocity result in the porous domain are shown in Figure 10, demonstrating
the capability of the IPM formulation for the solution of these problem types. As expected, the
two empty regions divert the flow away from the center of the channel: the flow tends to go into
the empty domains, with higher velocities than the porous region.

6. CONCLUDING REMARKS

Two discontinuous Galerkin (DG) formulations with solenoidal approximation for the simulation
of incompressible flow are proposed, with application to the Stokes equation. Following the
methodology of the interior penalty method (IPM), and considering a solenoidal and irrotational
decomposition of the interpolation space, an efficient DG formulation for the computation of
velocities and hybrid pressures (pressures along the element sides) is developed. Moreover, the
introduction of a penalty parameter for the weak enforcement of continuity of the normal velocity
along element sides leads to an alternative DG formulation where the computation of velocities
and pressures is completely decoupled. This second formulation coincides with the formulation

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1071–1092
DOI: 10.1002/fld



DG METHODS FOR THE STOKES EQUATIONS 1091

proposed in [13] and allows to compute the velocity field with no presence of pressure terms; the
pressure field can then be obtained as a post-process of the velocity solution.

Numerical experiments demonstrate the applicability of the proposed methods, with optimal
convergence rates under h-refinement. The effect of the penalty parameter is also analyzed: as usual
in IPM formulations, a penalty of order h−1 provides optimal results, whereas the non-consistent
penalty in the second formulation must be of order h−k , with k the degree of the approximation.
Thus, for large engineering computations this second formulation represents an important save
in the number of degrees of freedom in front of the IPM or alternative formulations, but as
usual in non-consistent penalty formulations, it may lead to ill-conditioned systems of equations.
Moreover, for the same discretization the IPM provides more accurate pressure results than the
second formulation.
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